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0 Introduction

0.1 Preface

The module this course belongs to is assessed over two short, open-book examinations. As a
consequence, these notes are very brief and contain very little proof or reasoning.

0.2 Useful Results from Complex Analysis

First, a few useful results from Complex Analysis.

Theorem (Residue Theorem). Consider some complex function f : C — C. Suppose f has a finite
set of N poles {z;} inside some closed contour ~, then

N
ff(z)dz =2mi y Res[f(2),z]. (1)
7

=1

Theorem (Cauchy’s Theorem). If there are no singularities inside the closed contour -, then
jéf(z)dz =0. (2)
~

Theorem (Jordan’s Lemma). Consider some complex function f : C — C for which f(z) — 0
as |z| = oo. Define 'yE and v to be semi-circular contours in the upper and lower half complex
planes, respectively. In the limit R — oo,

/ F(2)e™dz =0 if A >0 (3)
TR
(2)eMdz -0 if A<0 4)
R

0.3 Useful Integrals

For reference, here are some integrals that are useful to remember.

Example 1 (Gaussian Integral). The integral of a Gaussian is given by

/ o a(=0)% 1 — \/Z (5)

for some constants a,b € C, R(a) > 0.



1 Fourier Transform

Before we can define the Fourier transform, we must first define the property of square integrability.

Definition (Square Integrable). A function f: R — R or C is called square integrable if

| i@ ©

—00

is finite.

Now, let’s define the Fourier transform,

Definition (Fourier Transform). Consider a function f : R — R or C which is square-integrable
and decays to zero as x — +o00. Its Fourier transform is defined as the function f : R - R or C,
where

F) = Pl @0 = <= [ sy, g

The inverse Fourier transform of some function f(k) is defined as

@) = F W) @) = o= / F(k)e*edr. (8)

Different conventions exist for the normalisation factors.

1.1 Properties and Useful Results

Let’s go through some basic properties of the Fourier transform.

Property (Linearity). For any square integrable functions f(x) and g(x) and scalars a and b, we
have

Flaf(z) +bg(x)](k) = af (k) + by (k). 9)

Property (Shift). A shift in real space is a product with an exponential in k-space.

Suppose we shift f(z) by zp € R. Its Fourier transform is

Flf (@ —xo)] = e ™0 f (k). (10)

Similarly, a shift in k-space is given by the product with an exponential in real space,

Fle** fa)] = fk—K). (11)

Property (Scaling). Suppose we scale z by A € R, the Fourier transform of f(Ax) is given by
1 -
FlrOw)(k) = 17 ( ) 12)

4



Property (The Fourier Transform of a Real Function). Consider a real function f : R — R. Its
Fourier transform f(k) is not necessarily real. It can, however, be shown that

fk)* = f(=k). (13)

Suppose that f(x) is real and symmetric, then its Fourier transform is real. Conversely, if it is real
and anti-symmetric, then its Fourier transform is imaginary.

Theorem (Fourier transform of a Gaussian). Consider a Gaussian function

flx) =e", (14)

its Fourier transform is given by another Gaussian,

F(k) = \/%ekz/”‘a. (15)

Note that questions often expect you to start from the Fourier transform of exp(—2z?2/2) and use
the scaling theorem to find the FT for a different Gaussian.

Theorem (Derivative). For any n € N, the Fourier transform of an n-differentiable, square-
integrable function f(z) is given by

7|5

daxm

] (k) = (k)" (k). (16)

Analogically, }
2d"f
dkn’

Theorem (Fourier transform in n dimensions). The Fourier transform is easily extended to n

Fla"f(@)](k) = (4) (17)

dimensions,
3 1 n —ik-r
700 = s [ arrrme (19)
and, similarly,
1 n ik-r
£09 = Gy [ s (19)

1.1.1 The Dirac Delta Function
For reference, recall these basic properties of the Dirac delta,

5(—z) = 8(z) and 5(%):@'5(@. (20)

The delta function is differentiable. Denoting its nth-derivative 6 (z), it can be shown that
|8 - a)fa)de = (<11, (1)
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The Dirac delta function is the derivative of the Heaviside function, i.e.

©'(z) = d(x), (22)

where the Heaviside step function is defined as

@($)2{1 if >0, (23)

0 otherwise.

For some polynomial g(z) with roots {z1,...,xyx}, then it can be shown that

o(x —x;)
o(g(x) = ) ———r (24)
2l
In deriving the Fourier transform from the Fourier series, we are led to two important relations:

Theorem (Orthogonality Relation).

! k(=) g = §(x — ) (25)

21 J oo

Theorem (Completeness Relation).

! Rk Qg = §(k — ') (26)

27 J oo

1.1.2 Convolution

Definition (Convolution). The convolution between two functions f and g is defined as

(o)) = [ " dygle — ) (). (27)

— 00

It can be shown that convolution is symmetric and linear.

Theorem (Fourier Transform of a Convolution). A convolution in real space is equal to multipli-
cation in k-space.

FI(Sf * 9)(@)](k) = V2r f(k)g (k). (28)

1.1.3 Parseval’s Theorem

For some normed Hilbert space V', the normed inner product of two functions f,g € V is conserved
under Fourier transform,

/ " e (@)g(x) = / kg ()h). (20)

—00 —00



1.2 Applications of the Fourier Transform

We can apply the Fourier transform to solve a range of problems. In this course, we focus on solving
differential equations and integral equations.

1.2.1 Differential Equations

Example 2 (Wave Equation). In particular, we showed that the FT could be used to simplify the
wave equation in x,
Py _ 50%
oz~ " a2’
where v > 0. Substituting for y(x,t) its inverse FT, we were able to find a differential equation for
y(k,t) containing only derivatives in ¢,

(30)

-2 = %k, t). (31)

From this, we obtained a general solution for y(z,t),

1 o0 . .
z,t) = F ik, t)](z,t) = / A(k)e ==t 4 B(k)etkE+uh | q. 32
vat) = F kD)) = o= [ [aw) (h (2)
Example 3. We also considered the ODE
d>f
L F =), (3)
Here, the Fourier transform of the delta function was used to obtain the particular solution,
1 0 eik:c 1
Y A YR 4
Jol@) = =57 /Oo B2+ 1 2 (34)

where Jordan’s lemma and Cauchy’s theorem were applied to solve the integral.

1.2.2 Integral Equations

The convolution theorem makes the Fourier transform a powerful tool in solving integral equations
involving convolutions.

Example 4. Consider the integral
h(z) = e + / h(z —y)e Wldy. (35)

Noticing the second term on the RHS is a convolution, we can take the Fourier transform to find
an equation for h(k),

. k2 +1
(k) = \/2%27:5(1@ _3). (36)
Applying the inverse F'T, we find
h(z) = Zem. (37)
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1.3 The Discrete Fourier Transform

We consider two cases of the discrete Fourier transform (DFT).

1.3.1 Continuous z € [0, L)

Consider some function f(z), where = € [0, L). We can expand f(x),

1

@) === > fk)e'™, (38)
k

S

L
f<k>:& / da f(z)e"**. (39)

Here, k is discretised into

k=n— 40
n L ? ( )
where
n=0,+1,+2 .... (41)
1.3.2 Discrete z € [0,L)
Say x is now discrete, such that
T = nAx, (42)
where
n=20,1,2,...,N — 1, (43)

and N = L/Az. The function f(z) is discretised into f,,. The discrete Fourier transform of f, is

Nl

_ rs ei?ﬂfm/N’ 44
= i o (44)

- 1 N-l o
fi = Z fneszWnn/N. (45)

NAz ~—
This can be written in matrix form, _

f=Mf (46)

where f and f are column vectors with elements frn and f}h respectively. The matrix elements are
given by
1 g
Mjj = ————e"2mi/N, 47
9= UNBe )
Whilst the computation of f scales with O(N?), the symmetries in M allow for computation in
O(N log N) with the Fast Fourier Transform algorithm.



2 Laplace Transform

Whilst the Fourier transform is a powerful tool, it has two key restrictions. It is not defined for
functions which do not decay to zero and there is no way of incorporating initial or boundary
conditions — we can only obtain a particular integral. The Laplace transform gets around these
restrictions but introduces a new one.

Definition (Laplace Transform). Consider a function f(t) : R — C. The Laplace transform is
only defined for f(t) if
f(t) fort>0

(48)
0 for t < 0.

ft)=0@)f() = {

Hereafter, we will omit the Heaviside function and assume all functions we are interested in vanish
for t < 0. For such a function f(¢), the Laplace transform is defined as

F(s) = LIF@)(s) = /0 " petat, (49)

where the domain of s is restricted such that for all s f(t) exp(—st) — 0 for t — oo, i.e. the Laplace
transform exists for functions that grow no more than exponentially fast.

Definition (Inverse Laplace Transform and the Browmwich inversion formula). We also have the
inverse Laplace transform,

F&) = L)), (50)

Sometimes, the inverse LT can be found by recognition. When this isn’t possible, we use the

inversion formula,
1 ctioo .
t) = — *ds, 51
10 =50 [ Foetas 61
where ¢ is a real constant such that the Browmwich inversion contour {c —ico — ¢+ ioo} lies to
the right of all singularities off(s). This requirement ensures that f(¢) =0 for all ¢ < 0.

Proposition. Suppose that f (s) has a finite number of isolated singularities {si,..., sy} and that

~

f(s) = 0 as |s| = oo, then the inverse Laplace transform is given by

N
) = " Res[f(s)e™, 5] (52)
n=1

for ¢ > 0 and vanishes for ¢t < 0.

2.1 Properties of the Laplace Transform
For any scalars a,b € C and functions f,g : RT — C that vanish for ¢ < 0, we have the following
properties:

Property (Linearity).
Llaf + bg(s) = aL[f](s) + bL[g](s), (53)



Property (Translation). Consider a time shift by ¢y > 0,
LIf(t = to) H(t — to))(s) = e~ f(s). (54)
Similarly, consider a frequency shift by sq,
L' f()](s) = f(s = o). (55)
Property (Scaling). Consider time scaling by a factor of A > 0,
ol = 17 (3) (56)
Y= —f(2
AT AN
where we impose the constraint on A such that f(A¢) vanishes for ¢ < 0.

Property (Transform of a Derivative). The Laplace transform of a first derivative is

LI (](s) = sf(s) = f(0). (57)

Repeating this process n times, assuming f to be n-times differentiable and with an nth derivative
of exponential type,

LIFW@)](s) = s"f(s) = Y s" D). (58)
k=1
Property (Derivative of a Transform). The nth derivative of the Laplace transform is given by
n nd"f
Ll O)(s) = (~1)" (59)

From this property, we can easily calculate the Laplace transform of many functions, such as

£(s) = (-1 = (60)

Property (Taylor Series). Suppose that f(¢) can be written in a power series as

o
a
fiey=2_ —t", (61)
n=0
then, following from our result for t" above, its Laplace transform can be written

oo

)= S (62)

n=0

Property (Asymptotic Limits).

sf(s) =

5 f(0) ass— o0 (63)
f(oco) ass—0,

where the second case requires the limit of f at co to exist. These cases are often referred to as the
initial and final value theorems, respectively.
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Property (Integrals). The Laplace transform of an integral is, for 0 < a < ¢,

clf t ] =i -1 [ war, (64)

S
where we take the integral on the RHS as 0 when a = 0.

Property (Periodic Functions). Consider a function f(¢) periodic with period T, its Laplace
transform satisfies

T
f(s) = ﬁ /0 dtf(t)e=". (65)

Theorem (Convolution Theorem). Since f and g vanish for negative ¢, the definition of the con-
volution from before simplifies to

o= [ gt — ) F(Ear (66)

Just like for the Fourier transform, the Laplace transform of a convolution is given by

LI(f *g)(®)](s) = f(5)g(s)- (67)

2.2 Applications of the Laplace Transform

The Laplace transform converts ODEs to algebraic equations and PDEs to ODEs. It is particularly
useful in solving DEs when the initial conditions at ¢ = 0 are known.

The Laplace transform can also be used to solve integral equations, transforming a difficult integral
in time-space into one of a more favourable form in frequency space. The solution is found by
solving the frequency integral and applying the inverse Laplace transform.
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3 Summary

3.1 Common Fourier Transforms

FRI(K) = Vara(H
FIe|(k) = Varo(k — a)
Flba = a)(h) = —=e

Fleos(an)](k) = V3 (5(k — a) + 6(k + a))
Flsin(aa)] (k) = vV~ (5(k — a) — 6(k + a))

24

Fla"|(k )_ln\/%CSn)() forn e N

Fleos(az?))(k) = \/1271 €0 (i Z)
(

Flaf(z) + bg(x)](k) = af (k) + bg(k)
Flf (@ — x0)] = e ™0 £ (k)
Fle® f(2)] = f(k — k')
Flf ) (k) =

3.3 Common Laplace Transforms

Assume the region of convergence is Re(s) > 0 unless stated otherwise.

12



£y =~
L[t"] = sﬁl for n > 0
LleM = for Re(s) > Re(\)
Llsin(wt)] = 82+w2
Llcos(wt)] = 32+w2
L[sinh(wt)] = wQ, for Re(s) > |w]|
Lcosh(wt)] = w2, for Re(s) > ||
Lo —t)] =

3.4 Properties of the Laplace Transform

Llaf + bgl(s) = aL[f](s) + bL[g](s)
LIf(t—to)H(t — to)](s) = e~ f(s)

£l = 1 ()
LI D)) = " 7(5) = D540 (0)

ic:l
LI (D)(s) = <—1>“%

[/ f@) dt’} f(s) — S/Oaf(t’)dt’

LI(f*g)®)](s) = f(S)Q(S)
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